

The capacity of energy storage power stations will decline

Overview

China built enough energy storage capacity to power 20 million homes in 2024, yet 6.1% of these systems are essentially taking a permanent nap [1]. The global energy transition's poster child – energy storage power stations – is facing an unexpected crisis of underutilization and shutdowns.ls excessive energy storage a threat to China's power system?

But the risks for power-system security of the converse problem — excessive energy storage — have been mostly overlooked. China plans to install up to 180 million kilowatts of pumped-storage hydropower capacity by 2030. This is around 3.5 times the current capacity, and equivalent to 8 power plants the size of China's Three Gorges Dam.

Why do energy storage stations have different voltage levels?

The situation is further complicated by electrochemical-energy storage stations that operate at different voltage levels, hindering the suppression of fluctuations caused by inherently variable energy sources, such as wind and sunlight. Expansion of the capacity to generate energy must align with the capacity to store it.

Is excessive energy storage a problem?

Spyros Foteinis highlights the acknowledged problem that an insufficient capacity to store energy can result in generated renewable energy being wasted (Nature 632, 29; 2024). But the risks for power-system security of the converse problem — excessive energy storage — have been mostly overlooked.

Why is energy storage oversupply a problem?

The expansion is driven mainly by local governments and lacks coordination with new energy stations and the power grid. In some regions, a considerable storage oversupply could lead to conflicts in power-dispatch strategies across timescales and jurisdictions, increasing the risk of system instability and large-scale blackouts.

How will energy storage affect global electricity production?

Global electricity output is set to grow by 50 percent by mid-century, relative to 2022 levels. With renewable sources expected to account for the largest share of electricity generation worldwide in the coming decades, energy storage will play a significant role in maintaining the balance between supply and demand.

What is the future of energy storage?

Global installed energy storage is on a steep upward trajectory. From just under 0.5 terawatts (TW) in 2024, total capacity is expected to rise ninefold to over 4 TW by 2040, driven by battery energy storage systems (BESS). Last year saw a record-breaking 200 gigawatt-hours (GWh) of new BESS projects coming online, a growth rate of 80%.

The capacity of energy storage power stations will decline

Next step in China's energy transition: energy storage deployment

In addition, some cities and districts provide additional subsidies for energy storage power stations, mainly according to the amount of discharged electricity and the size of the ...

Flexible energy storage power station with dual functions of power ...

The high proportion of renewable energy access and randomness of load side has resulted in several operational challenges for conventional power systems. Firstly, this paper ...

What drives capacity degradation in utility-scale battery energy

Battery energy storage systems (BESS) find increasing application in power grids to stabilise the grid frequency and time-shift renewable energy production. In this study, we ...

Contact Us

For catalog requests, pricing, or partnerships, please visit: https://legnano.eu